
Journal of Computational Physics 281 (2015) 237–250
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A massively parallel solver for discrete Poisson-like problems

Yvan Notay ∗,1, Artem Napov

Service de Métrologie Nucléaire, Université Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2014
Received in revised form 13 June 2014
Accepted 18 October 2014
Available online 23 October 2014

Keywords:
Parallel computation
Poisson solver
Multigrid
Algebraic multigrid
AMG
Preconditioning
Aggregation

The paper considers the parallel implementation of an algebraic multigrid method. The
sequential version is well suited to solve linear systems arising from the discretization of
scalar elliptic PDEs. It is scalable in the sense that the time needed to solve a system is
(under known conditions) proportional to the number of unknowns. The associate software
code is also robust and often significantly faster than other algebraic multigrid solvers.
The present work addresses the challenge of porting it on massively parallel computers.
In this view, some critical components are redesigned, in a relatively simple yet not
straightforward way. Thanks to this, excellent weak scalability results are obtained on three
petascale machines among the most powerful today available.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many simulation codes in physics or engineering require the repeated solution of large symmetric positive definite (SPD)
linear systems

A u = b (1.1)

stemming from (or closely related to) the discretization of self-adjoint elliptic partial differential equations (PDEs) of the
form

−∇(D∇u) + cu = f in Ω ⊂ R
d, (1.2)

where d = 2 (2D problems) or d = 3 (3D problems), with D positive and c nonnegative in Ω , and with appropriate boundary
conditions prescribed on ∂Ω . As an example, when D ≡ 1 and c ≡ 0, one has the Poisson equation whose solution is at
the heart of simulation codes in quite diverse applications: computational fluid dynamics (CFD) programs based on pressure
correction techniques (e.g., [9,18,39]), some beam dynamics simulations [2,3], some plasma/flow interactions simulations
[38], chemical virtual prototyping [30], biomedical modeling [31], etc.

These linear system solutions often represent both the most time consuming part of the code and the main source of
performance bottleneck on parallel computers. For large 3D simulations, it is nowadays standard to use multigrid methods.
These methods are indeed scalable in the sense that the overall computational work to obtain the solution up to a prescribed
tolerance is proportional to the number of unknowns.

* Corresponding author.
E-mail addresses: ynotay@ulb.ac.be (Y. Notay), anapov@ulb.ac.be (A. Napov).

1 Research Director of the Fonds de la Recherche Scientifique – FNRS.
http://dx.doi.org/10.1016/j.jcp.2014.10.043
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.10.043
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ynotay@ulb.ac.be
mailto:anapov@ulb.ac.be
http://dx.doi.org/10.1016/j.jcp.2014.10.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.10.043&domain=pdf

238 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Multigrid methods use a hierarchy of progressively smaller systems to obtain fast convergence. In geometric multigrid
methods (e.g., [36]) this hierarchy is determined by discretizing the same continuous problem on a sequence of progressively
less refined grids. Such an approach is inherently problem dependent, meaning that particular problem features (boundary
conditions, jumps or anisotropy in the PDE coefficients, etc.) may require a special treatment. The implementation also
requires a close interaction between discretization and solution modules, which is incompatible with some software designs.

On the other hand, algebraic multigrid (AMG) methods generate the multigrid hierarchy automatically, starting from the
original system matrix A and recursively forming a smaller (coarser) problem from a larger one. Although the resulting
methods are then often slightly less efficient than their geometric counterparts, this approach avoids the just mentioned
drawbacks. The algorithms tend to be more robust, and can sometimes be applied to a wide class of problems without fur-
ther tuning. Moreover, the implementation of AMG methods is in no way easier than that of geometric multigrid methods,
but several software packages exist that can be called in a black box fashion and require less expertise from the end user.

There are several types of AMG methods. Options include classical AMG developed along the lines of the seminal works
by Brandt, McCormick, Ruge and Stüben [7,32], smoothed aggregation AMG initiated by Vaněk, Mandel and Brezina [40], and
(plain or unsmoothed) aggregation-based AMG as recently developed by the present authors [23,27,28].

Classical AMG methods are available in the hypre software package [19] (more specifically, their implementation forms
the BoomerAMG [17] module of hypre); hypre is intended for both sequential and distributed computing, but experiments on
massively parallel computers reveal some issues regarding the scalability of classical AMG methods; see [14] for a thorough
analysis and [13,41] for the development of variants designed to face the sources of performance bottleneck.

Smoothed aggregation AMG is available in the ML software package [15]. Its parallelization is discussed in [37], and nice
results on up to 2048 cores are reported in [2,3]; we are not aware of publications discussing its behavior on larger parallel
machines.

Aggregation-based AMG has been made popular thanks to the AGMG software package [25], which also comes with both
a sequential and a parallel version. In [27], promising numerical results are reported on a moderate size Intel cluster (with
up to 48 nodes). However, the conclusions in [27] are to be toned down: on the one hand, the comparison made in [10]
shows that aggregation-based AMG methods are faster than other AMG methods sequentially or on few processors, but may
become slower as the number of processors increases; on the other hand, the results reported in [6] for a related method
show that, on massively parallel systems, the scalability may be not fully satisfactory.

In the present paper, we report our efforts to improve the scalability of these aggregation-based AMG methods, focusing
in particular on the AGMG implementation. Our motivation is manifold. Firstly, AGMG is used in a number of applications;
see [30,31,35,38] for a sample of studies where the use of the package is acknowledged. Next, the sequential version
of AGMG has been found robust for a wide class of problems, including problems with jumps in the PDE coefficients,
strong anisotropy, unstructured meshes with strong local refinement and convection–diffusion problems with dominating
convection driven by non-constant flows [23,24,27,28]. It has also been reported as significantly faster than its competitors;
see [8,10,24]. We believe that this has some importance: to obtain the fastest parallel method, it is often a good idea to
start from the fastest method in sequential (even if this is more challenging because less a method requires computations,
less opportunity there is, in parallel, to overlap the communications with these computations).

Finally, issues to be faced are very different in nature from those raised by classical AMG methods, and therefore require
different approaches to tackle them. In fact, most if not all difficulties come from the use of the K-cycle [29]. According to
the results in, e.g., [12,21,27], it is indeed important to combine aggregation-based AMG methods with this cycle, despite
the larger number of coarse grid solves per iteration it involves, compared with the more standard V-cycle (see the next
section for details). Note that the way we address the associated difficulties in the context of AGMG is also insightful for
any method that uses the K-cycle, or even the W-cycle which presents similar characteristics.

In the following, we first confirm that the naive use of AGMG on many core systems leads to severe scalability issues.
Then we discuss the redesign of some critical algorithmic components, based on relatively simple yet not straightforward
adaptations. Finally, we report the weak scalability results obtained on different massively parallel architectures, with up to
373,000 cores. In particular, we show that a linear system with 1012 unknowns is solved in less than 2 minutes; that is, in
about 0.1 nanoseconds per unknown.

The paper is organized as follows. In Section 2, we review the main algorithmic components of AGMG. In Section 3, we
give once for all the technical specifications of the numerical experiments reported in the different parts of the paper. The
results obtained in parallel with the method as in [27] are presented in Section 4. The redesign for massively parallel com-
puters is discussed in Section 5, and numerical results obtained on petascale machines are reported in Section 6. Concluding
remarks are given in Section 7.

2. Algorithm overview

Before entering the core of this section, we make some general comments on the parallelization strategy. The unknowns
of the linear system (1.1) are distributed among the processes, or, equivalently, MPI ranks. All vectors are distributed accord-
ingly, as well as the rows of the matrix A. Hence, each process holds a “local” portion of the vectors and a “local” portion
of the matrix rows. We further call “local diagonal block” the part of these rows restricted to columns that correspond to
local unknowns. Altogether, the local diagonal blocks form the block diagonal part of A with respect to the partitioning of
the unknowns induced by their distribution among the processes.

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 239
We solve the linear system (1.1) using AGMG as a preconditioner for the flexible conjugate gradient (FCG) method [26].
In parallel, following ideas that trace back to [33], we consider an implementation of FCG that allows to compute the needed
inner products with a single global communication; see steps 5, 6 and 9 in Algorithm 1 below.2 The equivalence of this
latter with the original FCG algorithm from [26] is shown in Appendix A.

Algorithm 1 (Parallel FCG to solve A u = b)
1. Initialization: select initial approximation u0 and set r0 = b − A u0
2. for k = 0, 1, . . . until convergence
3. vk = B(rk)

4. wk = A vk
5. αk = vT

k rk

6. βk = vT
k wk

7. if k > 0
8. then
9. γk = vT

k qk−1
10. dk = vk − (γk/ρk−1) dk−1
11. qk = wk − (γk/ρk−1) qk−1
12. ρk = βk − γ 2

k /ρk−1
13. else
14. dk = vk
15. qk = wk
16. ρk = βk

17. uk+1 = uk + (αk/ρk) dk
18. rk+1 = rk − (αk/ρk) qk

Besides the inner products, the multiplication by A (matrix vector product, or Matvec at step 4) also requires commu-
nications. However, because the matrix is sparse, each process has only to communicate with a few neighbors, and this
communication can further be overlapped with the part of the Matvec related to the local diagonal block. The critical stage
is therefore the application of the preconditioner to the residual vector r (step 3).

If B(·) corresponds to the multiplication by a given SPD matrix B, FCG is equivalent to the standard preconditioned
conjugate gradient (PCG) method, and its convergence is then known to be related to the spectral properties of BA, namely
to the ratio of its largest and its smallest eigenvalues. However, FCG allows to maintain approximately the same convergence
rate when B only approximates a SPD matrix, for instance because computing B(r) involves solving linear subsystem(s),
which is done in practice only up to a given accuracy.

The speed of convergence obtained with algebraic multigrid preconditioning – and AGMG is not an exception – depends
on the interplay between the smoothing iterations and a coarse grid correction. Smoothing iterations are simple stationary
iterative methods; those used in AGMG are described below. Coarse grid correction amounts to a solution of a smaller
system associated with a coarser grid. In the case of AGMG the coarse grid is obtained by a partitioning of the n unknowns
in nc < n aggregates Gk , k = 1, . . . , nc . The matrix of the smaller system, referred to as coarse grid matrix, is then given by

(Ac)s� =
∑

i∈Gs

∑

j∈G�

(A)i j .

One application of the AGMG preconditioner is sketched in Algorithm 2 below.

Algorithm 2 (AGMG preconditioner: v =B(r))
1. v1 = L−1r (pre-smoothing)
2. r̃ = r − A v1 (residual update)
3. r̃c from (r̃c)s = ∑

i∈Gs
(r̃)i , s = 1, . . . , nc (restriction)

4. Solve (approximately) Acvc = r̃c (coarse grid solution)
5. v2 from (v2)i = (vc)s for s such that i ∈ Gs , i = 1, . . . , n (prolongation)
6. r = r̃ − A v2 (residual update)
7. v3 = U−1r (post-smoothing)
8. v = v1 + v2 + v3 (final result of the preconditioner application)

2 The main idea is the following. With a classical implementation, ρk = dT
k A dk is computed only when dk and qk = A dk are available; that is, only when

the inner product γk (needed to compute dk) has been finalized with a first global communication. Hence the finalization of ρk requires a second one. The
trick consists in: (1) instead of computing directly qk = A dk , use a recursion similar to that used for dk , based on the pre-computation of A vk; (2) obtain
ρk via an indirect formula involving βk = vT

k A vk and γk . Thus, both can be finalized with a single global communication, which can further be used to
finalize αk as well.

240 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Fig. 1. The steps corresponding to one iteration of AGMG preconditioner with 4 levels; for i = 1, . . . , 4, Li is for forward Gauss–Seidel with subsequent
residual computation (steps 1 and 2 of Algorithm 2); Ri is the restriction to the coarse grid at level i (step 3 of Algorithm 2); B is the bottom level solver
at level 4 (step 4 of Algorithm 2); Pi is the prolongation at level i (step 5 of Algorithm 2); Ui is for residual computation, backward Gauss–Seidel and the
sum of corrections at level i (steps 6–8 of Algorithm 2).

The pre-smoothing (step 1) amounts to perform a stationary iteration with L. Because sequential AGMG uses forward
Gauss–Seidel pre-smoothing, L is the lower triangular part of A. In parallel, this is modified into a method called Processor
Block Gauss–Seidel in [1] and hybrid Gauss–Seidel in [4]: one uses, for each process, a local L equal to the lower part of the
local diagonal block (that is, one discards from the “sequential L” the entries connecting unknowns assigned to different
processes). Hence step 1 is purely parallel. The same remark applies to post-smoothing (step 7), which is based on (hybrid)
backward Gauss–Seidel: U is the upper part of A in the sequential case, and, in parallel, locally the upper part of the local
diagonal block. Note that because A is supposed symmetric, U is the transpose of L in all cases.

On the other hand, steps 2 and 6 (residual updates) require the same type of communication as the Matvec operation
already discussed above. Hence the tricky part is concentrated in steps 3–5, which altogether form the coarse grid correc-
tion. For aggregation-based methods, the restriction of the residual from the fine grid to the coarse one (step 3), and the
prolongation of the coarse update on the fine grid (step 5), are both easily made purely parallel by enforcing the aggregates
Gi to contain only fine grid unknowns assigned to a same process. Then the points that remain to discuss are how is solved
the coarse grid system (step 4), and, finally, how are formed the aggregates.

Solving the coarse grid system. AGMG resorts to the K-cycle [29]: the system at step 4 is solved with two FCG iterations.
That is, Acvc = r̃c is also solved with Algorithm 1, using the zero vector as initial approximation and only two iterations.
Moreover, this application is recursive: as for the initial linear system, the preconditioner is based on a multigrid method
as sketched in Algorithm 2, but now at a coarser level; which also means that a further coarser level is used for the coarse
grid correction, the related systems being again solved with two FCG iterations, etc. The recursion is stopped at a properly
determined bottom level, and the corresponding coarse grid system is solved using an alternative (non-recursive) solution
method, referred to as bottom level solver. Often the bottom level solver is a direct solver, but changing this is crucial to
obtain good scalability on massively parallel systems; see the discussion in Section 5. On Fig. 1, we depict the work flow
associated with this recursive use of the algorithms in the four level case (the fine level corresponding to the systems (1.1)
to be solved, two intermediate levels, and the bottom level).

Aggregation procedure. The aggregation scheme used by AGMG is described in detail in [23]. It consists in several passes of
a pairwise matching algorithm. Hence if m passes are performed, aggregates will contain at most 2m unknowns. Not all
of them reach that size because a quality control is performed, aiming at guaranteeing some minimal convergence speed.
However, for the problems under consideration in this work, the ratio n/nc is effectively close to 2m when using two or
three passes (m = 2 or m = 3). In parallel, AGMG uses the same pairwise matching algorithm independently on each process,
with the additional constraint that pairs should be formed with local unknowns only. By default, the sequential version uses
two passes of pairwise aggregation (m = 2). This is increased to three (m = 3) for the parallel version, which also uses a
slightly relaxed value of the quality control parameter. This aims at favoring a faster coarsening (a more rapid decrease of
the number of unknowns from one level to the next), to reduce the number of levels and hence the overall amount of time
spent on coarse levels with few unknowns. Indeed, in parallel implementations the time spent on the coarse levels typically
scales less well than the time needed for the fine grid computation.

It is worth discussing briefly why the K-cycle uses exactly two iterations. Using more appears in practice useless (the
number of iterations at fine grid level is essentially unaffected), and this could also significantly impact the overall compu-
tational cost of the method when m = 2 (see [23] for a detailed discussion of the cost). There is more margin when m = 3
as by default with the parallel version, but with more than two iterations the issues discussed in Section 5 would be just
more critical.

On the other hand, using only one iteration is roughly equivalent to the V-cycle (which, more precisely, approximately
solves the coarse grid system with one application of the coarse level preconditioner). This cycle is often the preferred option
for geometric multigrid methods, and also classical and smoothed aggregation AMG methods. However, for aggregation-
based methods, using the more sophisticated K-cycle is an essential ingredient to ensure that the number of iterations does

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 241
not increase with the problem size. In parallel, this is clearly the downside of the approach, see the discussion in Section 5.
Note that the other AMG methods avoid this drawback but have their own issues, all related to the more complex opera-
tions needed to transfer from fine to coarse and coarse to fine, and the related definition of the coarse grid matrices; see,
e.g., [5,13,41].

To be complete, note that “exactly two iterations” has to be understood as “at most two iterations” for sequential AGMG
and the version used to produce the results in Table 2. These indeed bypass the second iteration when the decrease of the
residual norm after the first one is below a given threshold; see [27] for details. However, for the newly developed parallel
version discussed in Sections 5 and 6, this option has been abandoned: (1) due to larger aggregates than in sequential,
the criterion was almost never satisfied; (2) fixing in advance the number of iterations allows an enhanced implementation
with only one global communication for all two iterations.

3. Problems specification, reported data and tested architectures

We have two test problems, which are both discrete versions of the Poisson equation solved in a three-dimensional
parallelepiped ((1.2) with D ≡ 1, c ≡ 0, and d = 3). In all cases, we use homogeneous Dirichlet boundary conditions on the
back, left and bottom boundaries, and homogeneous Neumann boundary conditions on the front, right and top boundaries
of the parallelepiped.

In the first example, the parallelepiped is the unit cube (0, 1) × (0, 1) × (0, 1), and we consider 7-point finite difference
discretization with uniform mesh size h in all directions; the right side is f = 1 in the central zone (1

4 , 34) × (1
4 , 34) × (1

4 , 34),
and f = 0 elsewhere. In parallel, the p processes (where p is the number of MPI ranks that are launched) are arranged in a
px × p y × pz Cartesian grid as close as possible to a cubic grid, with p = px p y pz . A parallelepipedal portion of the domain
(and the corresponding discrete unknowns) is then assigned accordingly to each process. In weak scalability tests, the mesh
is refined as the number of processes increases, in such a way that the number of unknowns per process remains roughly
constant. The system matrix has approximately 7 nonzero entries per row, whereas, in parallel, performing a matrix vector
multiplication requires that each process communicates with 6 neighbors.

As second example we consider a system (1.1) with matrix A corresponding to the finite elements discretization using
third order (P3) Lagrangian bases on a uniform symplectic mesh of size h in all directions; the right hand side is given
by (b)i = sin(‖r‖2), with r = (rx, ry, rz) being the location of the ith unknown. In parallel, the p processes are again ar-
ranged in a px × p y × pz Cartesian grid, which, however, here induces a slight change in the problem’s geometry: the
parallelepiped Ω is tuned in such a way that each process deals with a cubic subdomain even if px , p y and pz are not
equal to each other; if px = p y = pz , then Ω is the unit cube. Here, the matrix is relatively denser and has approximately
44 nonzero entries per row, whereas performing a matrix vector multiplication requires that each process communicates
with 26 neighbors.

In all cases, the reported data correspond to an iterative solution with the zero vector as initial approximation; the
stopping criterion is the decrease of the relative residual error by a factor of 10−6 for the first problem and by 10−7 for the
second. The number given as “#p” is always the number of processes (or launched MPI ranks); in most cases, it coincides
with the number of cores available on the set of used computing nodes. All times reported are wall clock elapsed times
observed on the root process (MPI rank 0). We distinguish the setup time (Tsu) and the solution time (Tsolve), the total time
(Ttot) being the sum of both. The setup time is the time needed to build the preconditioner; that is, essentially, the time
to form the aggregates and compute the related coarse grid matrix at the successive levels of the hierarchy. On the other
hand, the solution time is the time more specifically spent during FCG iterations. Sometimes we also report the bottom level
time (Tbl), which is the part of the solution time that is spent more specifically in solving the linear systems at the bottom
level.

We have performed numerical tests on the following architectures (the first one being used only for some preliminary
tests).

Intel cluster: two Intel XEON L5420 processors at 2.50 GHz and 16 GB RAM memory per computing node, with Infini-
Band (half bandwidth) interconnect (2009).

Intel Farm (CURIE at CEA, France3): two eight-cores Intel Sandy Bridge EP (E5-2680) at 2.7 GHz and 64 GB RAM per
computing node, with InfiniBand QDR Full Fat Tree interconnect (2012). Up to 5040 nodes (80,640 cores), 20th in top 500
supercomputer list of November 2013 with 1.4 Petaflop/s on the Linpack benchmark.

IBM BG/Q (JUQUEEN at Juelich, Germany4): one IBM PowerPC A2 at 1.6 GHz with 16 cores and 16 GB RAM per computing
node, 5D Torus interconnect (2012). Up to 28,672 nodes (458,752 cores), 8th in top 500 supercomputer list of November
2013 with 5.0 Petaflop/s on the Linpack benchmark.

Cray XE6 (HERMIT at HLRS, Stuttgart, Germany5): two AMD Opteron(tm) 6276 (Interlagos) processors with 16 cores each,
and 32 GB RAM per computing node, High Speed Network CRAY Gemini (2011). Up to 3552 nodes (113,664 cores), 39th in
top 500 supercomputer list of November 2013 with 0.8 Petaflop/s on the Linpack benchmark.

3 http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm.
4 http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN.
5 https://wickie.hlrs.de/platforms/index.php/CRAY_XE6_Hardware_and_Architecture.

http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN
https://wickie.hlrs.de/platforms/index.php/CRAY_XE6_Hardware_and_Architecture

242 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Table 1
Sequential results on Intel cluster.

h−1 n
106 AGMG sequential AGMG parallel hypre

it. Tsu Tsol Ttot it. Tsu Tsol Ttot it. Tsu Tsol Ttot

Finite Difference on Intel cluster

60 0.22 10 0.5 0.5 1.0 10 0.2 0.4 0.6 13 1.0 1.1 2.1
120 1.73 11 2.3 5.0 7.3 10 3.0 3.3 6.3 15 9.0 11.2 20.1
200 8.00 11 13.9 24.8 38.7 10 17.4 15.6 33.1 17 44.6 61.2 105.8
300 27.00 11 50.7 86.4 137.1 10 63.3 54.6 117.9 19 162.2 241.1 403.3

Finite elements (P3) on Intel cluster

13 0.06 16 0.3 1.1 1.3 19 0.4 0.9 1.3 32 0.4 2.2 2.6
21 0.25 17 1.2 5.2 6.4 20 1.4 4.4 5.9 40 1.9 12.1 13.9
33 0.97 18 4.9 22.9 27.8 22 5.9 20.0 25.8 43 7.6 54.3 61.9
52 3.79 18 19.6 95.8 115.4 23 23.6 84.9 108.5 63 30.8 321.8 352.6

Table 2
Results with a direct solver at bottom level (AGMG 3.2.0).

#p n
106 it. Tsu Tsol (Tbl) Ttot

Finite Difference on Intel cluster (1 process per node)

1 27.0 10 63.3 54.6 (0.5) 117.9
2 53.2 11 62.8 62.4 (0.4) 125.2
4 107.9 11 69.8 72.2 (0.6) 142.0
8 216.0 11 72.8 75.1 (0.7) 147.9

16 432.1 11 69.9 79.2 (1.7) 149.1
32 862.8 11 72.7 76.4 (1.2) 149.1

Finite Difference on IBM BG/Q (16 processes per node)

16 43.6 11 27.4 26.6 (1.8) 54.0
64 175.6 11 28.0 29.5 (4.2) 57.5

512 1404.9 11 30.2 59.1 (33.6) 89.3

4. Results with a direct solver at bottom level

The release 3.2.0 of the AGMG software [25] implements the algorithm sketched in the previous section, calling an
external sparse direct solver to solve the linear systems at the bottom level. The number of levels is then calculated in such
a way that the needed LU factorization of the coarsest grid matrix requires only a negligible amount of time relative to fine
grid operations. The used sparse direct solver is MUMPS [20], which has both a sequential and a parallel version.

The sequential performance of AGMG is documented in several publications [23,24,27,28]. However, as written in Sec-
tion 2, the parallel version uses slightly different parameters. Before testing its scalability, it is then important to assess
the impact of these modifications on the sequential performance. This is done in Table 1, where we also give the results
obtained with the hypre software package [19], using the parameters recommended in [41, p. 282] for the parallel solution
of 3D problems.

One sees that AGMG is not much affected by the change of the default parameters. The setup time somehow increases,
but this is more than compensated by a decrease of the solution time. This situation is in fact typical for 3D problems.6

On the other hand, AGMG appears roughly three times faster than hypre. This is in line with the more detailed comparison
developed in [24] (see also [8,10]), which further displays the sensitivity of hypre to the many available options and param-
eters: tuning these at best for the problem at hand allows, in the sequential case, to reduce the penalty to a factor of about
two.

It is worth noting that both sequential and parallel AGMG are scalable in the sense that the number of iterations is
nearly constant whereas the time needed only slightly deviates from a linear growth with the number of unknowns.

We next give in Table 2 the results obtained with AGMG in parallel (again, the release 3.2.0 that uses parallel MUMPS
to solve the bottom level systems). The results on Intel cluster may be seen as an update of the numbers published in [27],
where the same architecture was tested with an earlier version of the package (not using the improved aggregation scheme
developed since then [23]). One sees that good weak scalability is achieved despite the relatively slow (compared with
today standard) communication network. Opposite to this, the results obtained on IBM BG display the limit of the approach
on many cores architectures. It is worth noting that the observed increase of the solution time is entirely due to the time
needed to solve the bottom level systems (reported in brackets). This observation is the starting point of the enhancements
presented in the next section.

6 In 2D cases, one often observes the same increase of the setup time (due to the additional pairwise aggregation pass), while the solution time is
essentially unaffected, reason for which the parameters used in parallel are not the default in sequential as well.

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 243
5. Algorithm redesign

Any parallel multigrid or algebraic multigrid solver needs a carefully designed bottom level solver [11]. Typically, only
few unknowns per process are left on the coarsest grid, making it difficult, if not impossible, to achieve good scalability for
that part of the algorithm. On top of that, even few unknowns per process may lead to non-trivial system sizes on massively
parallel computers with, say, more than hundred thousands of cores.

Now, with classical V-cycle implementations, only a tiny portion of the overall computational work is done at the bot-
tom level. Hence, even if that part scales poorly, there is an important margin before this affects significantly the overall
scalability of the method. Then, a number of approaches are possible. Some keep a non-trivial number of unknowns at the
bottom level and use a highly parallel iterative solver like the Chebyshev semi-iterative method [3] or the unpreconditioned
conjugate gradient method [16]; it is also possible to make gradually idle the processes which cannot be used efficiently
given the size of the coarse grid matrix at hand [36, Section 6.3.2]; in the context of AMG methods, an efficient implemen-
tation of this latter approach may be hard to obtain [6], which may motivate a simpler variant, where the whole coarsest
grid system is gathered on a single process, then solved directly with a (sequential) sparse direct solver, the solution being
scattered next to all processes (or, somehow equivalently, the sequential solve is repeated in parallel on all processes).

The K-cycle used by AGMG (see Section 2) induces however an additional difficulty: more we use levels, more we need
to call the bottom level solver per fine grid iteration; see Fig. 1. In fact, if we use � levels, the algorithm needs exactly 2�−2

bottom level solutions per iteration; the grow is thus exponential. Therefore, in the context where the number of levels
grows with the problem size so as to keep the bottom level reasonably small, none of the approaches mentioned above is
likely successful on petascale computers.

Of course, it is possible to combine aggregation with the V-cycle, but, as mentioned in Section 2, then one looses algo-
rithm scalability, because the number of iterations will in general grow with the number of levels. Hence, the comparison
with purely sequential AGMG would become less favorable, whereas the weak scalability would suffer if the number of
levels is increased with the global size of the system (so as to maintain the size of the coarsest grid roughly constant). This
is for instance seen in [6], where an aggregation-based method is considered that is somehow similar to AGMG except that
the V-cycle is used. In the weak scalability tests reported in [6, Table 6], one may observe that the total solution time is
increased by a factor of about 5 when going from 1 to 262,000 cores. Most of this increase comes from the setup time,
because the sophisticated approach used on the coarsest levels does not scale that well during that phase. But a significant
part of the loss of scalability further comes from the increase of the number of iterations.

Using the K-cycle is thus in some sense the price to pay to have an optimal multilevel method with the appealing fea-
tures associated with aggregation schemes, including the inherent parallelization of restriction and prolongation operations
(see Section 2).

We therefore considered another strategy: limit the number of levels to a few, whatever the global problem size. This can
be achieved by using very large aggregates to obtain a much faster reduction of the number of unknowns from one level to
the next. Alternatively, one may run only few steps of “standard” aggregation, and then develop a bottom level solver able to
cope with the still relatively large systems that are left at the bottom level. Here we opt for the latter approach, because the
former would again imply a deterioration of the convergence rate. The challenge is of course to design a “sufficiently good”
bottom level solver. It has to be highly parallelizable, and, in particular, avoid the above mentioned problem associated with
the K-cycle. On the other hand, it does not need to be as fast as AGMG from a purely sequential viewpoint. Indeed, even
after only three aggregation steps (like in Fig. 1), the coarsest grid system will typically have something like 83 ≈ 500 times
less unknowns than the fine grid system. Hence we may use a somehow suboptimal solver from the “operation count”
viewpoint without a significant impact on the overall computing time.

These considerations lead us to the following design choices for the new bottom level solver. Firstly, the solver is now an
iterative method. Note that the solution at the bottom level does not need to be computed very accurately. According to our
numerical experiments, a stopping criterion based on a relative tolerance of 0.4 is sufficient to ensure that the number of
outer iterations (at fine grid level) is essentially the same as when using a direct bottom level solver. This is in agreement
with the observations in [36, Section 6.3.2] (made for a slightly different W-cycle).

Now, to maintain scalability while maximizing the parallel performance, we consider as bottom level solver a two-level
scheme with coarse grid obtained by very aggressive aggregation: all “local” unknowns on a same process are grouped in a
single aggregate. Thus, see Fig. 2, the bottom level solver is the PCG method with a preconditioner of the same type as the
one sketched in Algorithm 2, with a coarse grid matrix that has exactly as many unknowns as there are processes (i.e., MPI
ranks).

However, the convergence properties of such a bottom level solver suffer from this very aggressive aggregation, compared
with the aggregation in standard AGMG. To maintain the number of iterations needed to achieve the prescribed tolerance
to only a few (typically 3–5), we consider using a better smoother than hybrid forward or backward Gauss–Seidel. Staying
with the idea that the smoother should be purely parallel, one option is block Jacobi; that is, based on the exact inversion
on each process of the local diagonal block. The method is then similar to a two-level non-overlapping additive Schwarz
scheme [34]. However, for large 3D problems, the needed exact factorization of these matrix blocks is too costly from both
memory and computational time viewpoints. The idea is then to replace, for each diagonal block, its exact inversion by the
approximation resulting from one application of the sequential AGMG preconditioner. The convergence happens to be nearly

244 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Fig. 2. Iterative two-level scheme as the bottom level solver: Sb is the bottom level smoother; Rb is the restriction to the very coarse grid; Bb is the very
coarse grid solver; Pb is prolongation from the very coarse grid to the bottom level.

identical to that obtained with the smoother based on exact inversion, whereas computational and memory requirements
are modest and proportional to the number of local unknowns at the bottom level.

Next, with such an excellent smoother we do not need in fact two smoothing iterations per preconditioning step as in
Algorithm 2 (steps 1 and 7). We thus use only one step, in combination with a deflation based implementation of the PCG
method [22], to avoid inconsistencies with standard PCG (that requires a symmetric preconditioner). Further, working out
at a technical level, it turns out that the idea from [33] already used in Algorithm 1 can be further extended so as to group
in a single global communication step both the finalization of the inner products needed by PCG and the gathering of the
data needed for the very coarse grid correction.

Regarding the coarse grid system of the bottom level solver (i.e., as written above, the very coarse grid system with
exactly one unknown per process), one option is to solve it sequentially with a sparse direct solver, each process repeating
the solution to avoid a further communication to scatter the computed solution. This works fine up to 1000–10,000 cores,
but, beyond, the time needed to solve these systems becomes a performance bottleneck. The idea is then to exchange these
sequential solves for parallel ones, but using only a restricted set of processes. More precisely, we found that if there are
p processes and thus p unknowns on the very coarse grid, using about p/512 processes to solve the systems in parallel is
about optimal. Thus, typically, 512 subgroups are formed with p/512 processes each, and a parallel solution is performed
within each subgroup. This way we also avoid a further global communication: the solution computed in parallel has only
to be scattered inside the subgroup. Now, what method to use for this parallel solution? AGMG again, which is thus used
recursively. However, to avoid an endless recursion, we make sure that, for this secondary call, the very coarse grid solver
uses a sequential direct method; using a direct solver is harmless here since the number of processes has been reduced by
a factor of 512.

Schematically, the work flow for each iteration of the bottom level solver is thus as follows.

1. Smoothing (Sb in Fig. 2): apply sequential AGMG to the local part of the residual.
2. Compute the local part of the needed inner products, and the local component of the right hand side vector for the

very coarse grid correction (this latter: local part of Rb in Fig. 2).
3. Gather/Scatter data: inner products and right hand side of the very coarse grid system (this latter: global part of Rb in

Fig. 2).
4. Solve the very coarse grid system (Bb in Fig. 2): depending on the number of unknowns, call either parallel AGMG

within subgroups, or a sequential sparse direct solver.
5. Vector operations and residual update.

6. Results on petascale computers

Before considering the concurrent use of many computing nodes, the first point to address is whether the parallelization
scheme is efficient on a single node. In the right columns of Table 3, we report the results of weak scaling experiments,
using an increasing number of processes on a single node of some modern multicore architectures. At first sight, these
results suggest a mixed answer, the computing time increasing significantly as we use more cores. It is however interesting
to compare the numbers in the right columns with those in the left columns. There, we test the impact on the computing
time of running simultaneously several instances of the sequential program. The resulting time therefore simulates an ideal
situation where the impact of the communication may be neglected because the local systems are solved independently of
each other. One sees that this “ideal” parallelization is not more efficient than that of AGMG.

The above observations are explained by hardware features. In particular, shared memory is efficient from the com-
munication viewpoint, as most MPI implementations actually replace the communications with simple “write to memory”.
However, there is some downside: caches and access channels are also at least partly shared, meaning that memory traffic
slows down when more threads run concurrently. And it is a well-known fact that, in computations dealing with sparse
matrices, one hardly achieves a small percentage of machine peak performance, because the real bottleneck is not CPU
speed but memory access.

This analysis is further confirmed by checking the time needed to solve sequentially the largest systems considered in
Table 3. In Table 1, we have seen that sequential AGMG requires a time nearly proportional to the number of unknowns.
Accordingly, we would expect that, on Intel Farm, something like 16 × 26.8 = 428.8 seconds would be needed to solve a
system 16 times larger than the system solved in 26.8 seconds. Instead, AGMG solves that system in 614.1 seconds. As

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 245
Table 3
Results with enhanced AGMG (iterative coarse grid solver) on a single multicore node.

#p AGMG sequential
(#p concurrent run)

AGMG parallel
(weak scaling rule)

n
106 it. Tsu Tsol Ttot

n
106 it. Tsu Tsol Ttot

Finite Difference on Intel Farm

1 1 × 11.2 11 10.9 15.9 26.8 11.2 10 14.0 10.2 24.2
8 8 × 11.2 11 16.4 28.4 44.8 89.9 12 22.1 25.0 47.1

16 16 × 11.2 11 15.7 28.4 44.1 179.4 12 20.1 24.8 44.9

Finite Difference on IBM BG/Q

1 1 × 2.7 11 12.6 30.1 42.7 2.7 10 15.4 19.6 35.0
8 8 × 2.7 11 19.3 31.6 50.9 22.0 11 26.2 24.0 50.2

16 16 × 2.7 11 20.1 33.6 53.8 43.6 11 27.1 26.1 53.3

Finite Difference on Cray XE6

1 1 × 2.7 11 3.0 7.1 10.1 2.7 10 3.8 4.5 8.3
8 8 × 2.7 11 3.4 7.6 11.0 22.0 11 4.8 5.7 10.4

32 32 × 2.7 11 5.5 16.8 22.3 87.5 12 7.3 15.1 22.4

Table 4
Results with enhanced AGMG (iterative coarse grid solver); the number of cores is equal to the number of processes (“#p”).

#p n
106 it. Tsu Tsol (Tbl) Ttot

Finite Difference on Intel Farm

16 179 12 20.1 24.8 (0.9) 44.9
64 719 12 22.4 25.7 (1.0) 48.1

512 5755 12 22.6 26.7 (1.7) 49.3
4096 46,037 12 22.9 29.0 (3.4) 51.9

13,824 155,374 12 22.7 33.7 (8.0) 56.4
32,768 368,293 12 23.3 41.9 (15.4) 65.2

Finite Difference on IBM BG/Q

16 44 11 27.1 26.1 (1.1) 53.2
64 176 11 28.0 26.6 (1.3) 54.6

512 1405 12 28.3 29.4 (1.7) 57.7
4096 11,239 12 28.3 31.3 (3.4) 59.6

32,768 89,915 12 28.5 34.8 (6.9) 63.3
110,592 303,464 13 28.7 52.9 (22.5) 81.6
373,248 1,024,193 13 29.3 81.2 (50.5) 110.5

Finite Difference on Cray XE6

32 88 12 7.3 15.1 (0.4) 22.4
128 349 12 7.5 15.5 (0.6) 23.1
512 1405 12 7.9 16.0 (0.7) 23.9

4096 11,239 12 8.2 17.0 (1.4) 25.1
32,768 89,915 12 8.6 19.7 (4.1) 28.3

110,592 303,464 13 8.9 29.4 (12.5) 38.3

there is no doubt that the number of arithmetic operations is still proportional to the number of unknowns, this has to be
explained again by hardware features. In particular, the cache organization is more sophisticated on modern architectures,
but this mostly benefits to computations that use only part of the memory of the computing node.

It also follows from this last observation that the strong scalability is in fact better than the weak scalability analyzed in
Table 3: as written above, the time needed to solve sequentially on Intel Farm the system with 179 millions unknowns is
614.1 seconds, whereas, as reported in Table 3, using 16 processes we need 44.9 seconds. The speed up is thus 614.1/44.9 =
13.7, which is not far from the ideal speed up of 16.

Hence, to conclude, although the situation depicted in Table 3 is not ideal, issues are not related to the parallelization
model of AGMG, but rather to the suboptimal CPU usage of computer programs dealing with sparse matrices, and any
competitor to AGMG would have to face similar difficulties.

We now report in Tables 4 and 5 the weak scalability results obtained when running on many computing nodes, keeping
the number of processes per node equal to the number of available cores. The weak scalability curve is not perfectly flat,
and the time needed on a single node can incur an increase by a factor up to two. Despite the improvements discussed in
the preceding section, this is still the bottom level solver which is the major source of bottleneck.

Nevertheless, the results are satisfactory: in fact, the time is first essentially constant, and then increases but moderately,
and a significant increase is only observed at a somehow extreme scale. For instance, the factor of two is seen on IBM BG/Q

246 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Table 5
Results with enhanced AGMG (iterative coarse grid solver); the number of cores is equal to the number of processes (“#p”).

#p n
106 it. Tsu Tsolve (Tbl) Ttot

Finite elements (P3) on Intel Farm

16 37 24 10.2 42.9 (6.6) 53.1
64 147 25 10.2 43.1 (7.1) 53.3

512 1178 25 10.3 47.1 (9.0) 57.4
1728 3974 26 10.3 49.6 (11.3) 59.9
4096 9421 26 10.4 52.1 (12.4) 62.5

13,824 31,795 27 10.8 65.8 (24.1) 76.6
32,768 75,365 27 11.9 74.7 (33.3) 86.6

Finite elements (P3) on IBM BG/Q

16 9 23 18.1 50.0 (6.0) 68.1
64 38 24 18.5 53.0 (7.3) 71.5

512 303 25 19.1 56.0 (8.4) 75.1
4096 2428 25 18.8 54.4 (12.4) 73.2

32,768 19,422 26 19.4 64.4 (20.6) 83.8

Finite elements (P3) on Cray XE6

64 38 24 5.4 23.9 (2.7) 29.3
512 303 25 7.2 26.2 (3.5) 33.4

4096 2428 25 9.9 28.3 (5.2) 38.2
32,768 19,422 26 9.4 34.7 (9.8) 44.1

110,592 65,548 26 11.0 44.7 (20.1) 55.7

Fig. 3. Total elapsed time on Cray XE6 as a function of the system size, for different size per core; the number of processes is equal to the number of cores
(Finite Difference).

when using more than 370,000 cores, that is, more than 80% of the machine ranked eighth in the top 500 supercomputer
list of November 2013.

More importantly, when considering scalability results, one should never forget that their relevance depends on the
quality of the sequential code one starts from. For instance, the factor of two mentioned above has to be put in perspective
with the factor of three with respect to hypre observed in Table 1 (and on the many more tests reported in [24]). It is also
clear that our parallelization strategy for aggregation-based AMG is more efficient than the one developed in [6].

On the other hand, it is also interesting to check the behavior of the solver for different problem sizes per core. This is
done in Fig. 3, where one sees that the weak scalability remains nice even when there are significantly less unknowns per
core. Consequently, the parallelization can also be used to compute the solution of moderately large linear systems in just a
few seconds.

Finally, as seen in Tables 4 and 5, the bottom level solver remains the main source of performance bottleneck despite the
significant improvements over the previous version. In Figs. 4–6 we give, in regard of the total elapsed time, the detail on
how the time is spent during operations associated with this bottom level solver: “Computation” refers to the time spent
with purely local computation; “Neighbor comm.” refers to the time spent waiting for data from neighbor processes, needed
to achieve Matvecs; “Global comm.” refers to the time taken by the global communications (one per inner iteration, which,

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 247
Fig. 4. Total time and partial times spent by the bottom level solver on Intel Farm as a function of the number of cores, for a fixed size of 11.2 millions of
unknowns per core (Finite Difference).

Fig. 5. Total time and partial times spent by the bottom level solver on IBM BG/Q as a function of the number of cores, for a fixed size of 2.75 millions of
unknowns per core (Finite Difference).

as written above, gathers inner products needed by the conjugate gradient method and the exchange of data needed by the
very coarse grid correction); “Very coarse grid” refers to the time taken by the solution of the linear systems on the very
coarse grid with one unknown per core.

One sees that, for the largest tested configurations, the global communications represent in all cases the most time
consuming part of the bottom level solver operations. Therefore, for the approach developed here to remain viable at
larger scale (say, exascale), one needs to accompany the growth in the number of cores with the improvement of the
communication network, in such a way that performing global communications remains affordable.

On IBM BG/Q and Cray XE the solution of the very coarse grid systems also takes a significant time. Note, however, that
this part of the code has not been fully optimized; e.g., the number of cores per subgroup has not been finely tuned.

Finally, one may wonder why the purely sequential part of the algorithm appears also not completely scalable. Actually,
this is an effect inherited from the trick used to gather all global communications in a single MPI reduce operation per inner
iteration. Technically, this operation has to be an “Allgather”, meaning that all partial inner products are gathered on each
process in a long vector. The finalization of the inner products requires then, as part of the local computations, to sum all
these partial components. This seems harmless, but on IBM BG/Q and Cray XE, the number of unknowns at bottom level is
roughly 2.75 × 106/500 ≈ 5500, whereas the number of components to sum is equal to the number of cores and may thus

248 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
Fig. 6. Total time and partial times spent by the bottom level solver on Cray XE6 as a function of the number of cores, for a fixed size of 2.75 millions of
unknowns per core (Finite Difference).

exceed 105. Here, a better implementation would parallelize the sum in subgroups, similarly to the parallelization scheme
used to solve the very coarse grid systems.

7. Conclusions

We considered the AGMG software to solve discrete Poisson-like problems on massively parallel computers. AGMG im-
plements the flexible conjugate gradient iterative method with an aggregation-based algebraic multigrid preconditioning.
While aggregation itself is fairly well adapted to parallel computation, it necessitates the use of the K-cycle (instead of
the classical V-cycle), which has been found a source of performance bottleneck because of the many bottom level solves
required per iteration step. This issue has been addressed by drastically limiting the number of levels and therefore the
number of bottom level solves per iteration. Because the bottom level systems are then much larger than usual with multi-
grid, this required the development of an appropriate (and highly parallel) bottom level solver. We were successful in this
task by considering a two-level method that combines very aggressive aggregation with a smoother based on sequential
AGMG applied ignoring matrix entries that connect unknowns on different processors.

The numerical experiments on some of today largest computers show excellent weak scalability even for several hundred
thousands of cores.

Acknowledgement

We acknowledge PRACE for awarding us access to resources CURIE (Intel Farm at CEA, France), JUQUEEN (IBM BG/Q at
Juelich, Germany) and HERMIT (Cray XE6 at HLRS, Stuttgart, Germany).

Appendix A

Here we show that Algorithm 1 is mathematically equivalent to the FCG method introduced in [26]; more particularly,
to the FCG(1) variant which is the cheapest and the closest to the standard PCG algorithm (compared with this latter, it
requires only one more inner product computation per iteration). We first recall the algorithm given in [26].

Algorithm 3 (FCG(1) method from [26] to solve A u = b)
1. Initialization: select initial approximation ũ0 and set r̃0 = b − A ̃u0
2. for k = 0, 1, . . . until convergence
3. ṽk = B(r̃k)

4. if k > 0
5. then

6. d̃k = ṽk − ṽT
k Ad̃k−1

d̃T
k−1 Ad̃k−1

d̃k−1

7. else
8. d̃k = ṽk

Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250 249
9. ũk+1 = ũk + d̃T
k r̃k

d̃T
k Ad̃k

d̃k

10. r̃k+1 = r̃k − d̃T
k r̃k

d̃T
k Ad̃k

Ad̃k

The following result then holds.

Lemma A.1. Algorithms 1 and 3 are mathematically equivalent if A is symmetric and u0 = ũ0 . More precisely, for any k ≥ 0 one has
then vk = ṽk, dk = d̃k, qk = Ad̃k, uk+1 = ũk+1 , rk+1 = r̃k+1 and

ρk = d̃T
k A d̃k, (A.1)

αk = dT
k rk. (A.2)

Proof. The proof is by induction. First, the statement is easily checked for k = 0. Next, assume that it holds for k − 1. Then
the steps 3 of both algorithms imply vk = ṽk . Comparing for k > 0 steps 9, 10 of Algorithm 1 with step 6 of Algorithm 3,
and using the equalities qk−1 = A ̃dk−1 and ρk−1 = d̃T

k−1 A ̃dk−1 (induction on (A.1)), one obtains dk = d̃k . Then, steps 4, 10,
11 of Algorithm 1 together with qk−1 = A ̃dk−1 yield qk = Ad̃k . Further, for k > 0 the equality (A.1) is obtained by noting
that dT

k Adk−1 = d̃T
k Ad̃k−1 = 0 as follows from step 6 of Algorithm 3, and hence, using step 10 of Algorithm 1,

d̃T
k Ad̃k = dT

k Adk = dT
k Avk − γk

ρk−1
dT

k Adk−1︸ ︷︷ ︸
0

= vT
k Avk︸ ︷︷ ︸
βk

− γk

ρk−1
dT

k−1 Avk︸ ︷︷ ︸
γk

= ρk.

To show (A.2), we note that d̃T
k−1 r̃k = 0 as follows from step 10 of Algorithm 3. Hence, for k > 0, there holds

d̃T
k r̃k = ṽT

k r̃k − ṽT
k Ad̃k−1

d̃T
k−1 Ad̃k−1

d̃T
k−1r̃k︸ ︷︷ ︸

0

= vT
k rk = αk.

Eventually, comparing for k > 0 the steps 17, 18 of Algorithm 1 with steps 9, 10 of Algorithm 3 and using (A.1), (A.2) as
well as qk = A ̃dk , one concludes that uk+1 = ũk+1 and rk+1 = r̃k+1. �
References

[1] M. Adams, M. Brezina, J. Hu, R. Tuminaro, Parallel multigrid smoothing: polynomial versus Gauss–Seidel, J. Comput. Phys. 188 (2003) 593–610.
[2] A. Adelmann, P. Arbenz, Y. Ineichen, A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations, J. Comput. Phys. 229

(2010) 4554–4566.
[3] A. Adelmann, P. Arbenz, Y. Ineichen, Improvements of a fast parallel Poisson solver on irregular domains, in: K. Jónasson (Ed.), Applied Parallel and

Scientific Computing, in: Lect. Notes Comput. Sci., vol. 7133, Springer, Berlin, Heidelberg, 2012, pp. 65–74.
[4] A.H. Baker, R.D. Falgout, T.V. Kolev, U.M. Yang, Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput. 33 (2011) 2864–2887.
[5] A.H. Baker, T. Gamblin, M. Schulz, U.M. Yang, Challenges of scaling algebraic multigrid across modern multicore architectures, in: Proceedings of the

2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 275–286.
[6] M. Blatt, O. Ippisch, P. Bastian, A massively parallel algebraic multigrid preconditioner based on aggregation for elliptic problems with heterogeneous

coefficients, http://arxiv.org/abs/1209.0960, 2013.
[7] A. Brandt, S.F. McCormick, J.W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in: D.J. Evans (Ed.), Sparsity and Its Application, Cambridge

University Press, Cambridge, 1984, pp. 257–284.
[8] M. Duarte, Z. Bonaventura, M. Massot, A. Bourdon, A numerical strategy to discretize and solve Poisson equation on dynamically adapted multiresolu-

tion grids for time-dependent streamer discharge simulation, http://hal.archives-ouvertes.fr/hal-00903307, 2014.
[9] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the incom-

pressible Navier–Stokes equations, J. Comput. Phys. 227 (2008) 1790–1808.
[10] M. Emans, Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows, Parallel Comput. 36 (2010) 326–338.
[11] M. Emans, Coarse-grid treatment in parallel AMG for coupled systems in CFD applications, J. Comput. Sci. 2 (2011) 365–376.
[12] M. Emans, Krylov-accelerated algebraic multigrid for semi-definite and nonsymmetric systems in computational fluid dynamics, Numer. Linear Algebra

Appl. 19 (2012) 210–231.
[13] R.D. Falgout, J.B. Schroder, Non-Galerkin coarse grids for algebraic multigrid, Tech. Rep. LLNL-JRNL-641635, Lawrence Livermore National Laboratory,

Center for Applied Scientific Computing, Livermore, CA, USA, 2013.
[14] H. Gahvari, A.H. Baker, M. Schulz, U.M. Yang, K.E. Jordan, W. Gropp, Modeling the performance of an algebraic multigrid cycle on HPC platforms, in:

D.K. Lowenthal, B.R. Supinski, S.A. McKee (Eds.), Proceedings of the 25th International Conference on Supercomputing, 2011, Tucson, AZ, USA, May
31–June 04, 2011, ACM, 2011, pp. 172–181.

[15] M.W. Gee, C.M. Siefert, J. Hu, R.S. Tuminaro, M. Sala, Ml 5.0 smoothed aggregation user’s guide, Tech. Rep. SAND2006-2649, Sandia National Laborato-
ries, Albuquerque, NM, USA, 2006.

[16] B. Gmeiner, H. Köstler, M. Stürmer, U. Rüde, Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance comput-
ing clusters, Concurr. Comput. 26 (2014) 217–240.

[17] V.E. Henson, U.M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math. 41 (2002) 155–177.
[18] C. Hirsch, Numerical Computation of Internal and External Flows, 2nd edition, Elsevier, Amsterdam, 2003.
[19] Hypre software and documentation, available at https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html.
[20] MUMPS software and documentation, available online at http://graal.ens-lyon.fr/MUMPS/.

http://refhub.elsevier.com/S0021-9991(14)00725-6/bib61646272687574753033s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6164617262696E3130s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6164617262696E3130s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6164617262696E3132s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6164617262696E3132s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib626166616B6F79613131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6261676173636879613131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6261676173636879613131s1
http://arxiv.org/abs/1209.0960
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib616D672D6F726967696E616C3834s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib616D672D6F726967696E616C3834s1
http://hal.archives-ouvertes.fr/hal-00903307
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656C686F73686173687574753038s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656C686F73686173687574753038s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656D613130s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656D61313161s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656D613132s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib656D613132s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6661736368723133s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6661736368723133s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib67616261736379616A6F67723131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib67616261736379616A6F67723131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib67616261736379616A6F67723131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib4D4C3036s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib4D4C3036s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib676D6B6F737472753134s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib676D6B6F737472753134s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib68656E79613032s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib68693037s1
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
http://graal.ens-lyon.fr/MUMPS/

250 Y. Notay, A. Napov / Journal of Computational Physics 281 (2015) 237–250
[21] A.C. Muresan, Y. Notay, Analysis of aggregation-based multigrid, SIAM J. Sci. Comput. 30 (2008) 1082–1103.
[22] R. Nabben, C. Vuik, A comparison of deflation and the balancing preconditioner, SIAM J. Sci. Comput. 27 (2006) 1742–1759.
[23] A. Napov, Y. Notay, An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput. 34 (2012) A1079–A1109.
[24] A. Napov, Y. Notay, Algebraic multigrid for moderate order finite elements, SIAM J. Sci. Comput. 36 (2014) A1678–A1707; preprint available online at

http://homepages.ulb.ac.be/~ynotay.
[25] Y. Notay, AGMG software and documentation, see http://homepages.ulb.ac.be/~ynotay/AGMG.
[26] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput. 22 (2000) 1444–1460.
[27] Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal. 37 (2010) 123–146.
[28] Y. Notay, Aggregation-based algebraic multigrid for convection–diffusion equations, SIAM J. Sci. Comput. 34 (2012) A2288–A2316.
[29] Y. Notay, P.S. Vassilevski, Recursive Krylov-based multigrid cycles, Numer. Linear Algebra Appl. 15 (2008) 473–487.
[30] V. Novák, P. Kočí, F. Štěpánek, M. Marek, Integrated multiscale methodology for virtual prototyping of porous catalysts, Ind. Eng. Chem. Res. 50 (2011)

12904–12914.
[31] M. Pennacchio, V. Simoncini, Fast structured AMG preconditioning for the bidomain model in electrocardiology, SIAM J. Sci. Comput. 33 (2011)

721–745.
[32] J.W. Ruge, K. Stüben, Algebraic multigrid (AMG), in: S.F. McCormick (Ed.), Multigrid Methods, in: Front. Appl. Math., vol. 3, SIAM, Philadelphia, PA,

1987, pp. 73–130.
[33] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. Sci. Stat. Comput. 6 (1985) 865–881.
[34] B. Smith, P. Bjørstad, W. Gropp, Domain Decomposition, Cambridge University Press, Cambridge, 1996.
[35] K.C. Smith, T.S. Fisher, Conduction in jammed systems of tetrahedra, J. Heat Transf. 135 (2013), Article ID 081301, 7 pp.
[36] U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2001.
[37] R.S. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in: Proceedings of the 2000

ACM/IEEE Conference on Supercomputing, Supercomputing ’00, IEEE Computer Society, Washington, DC, USA, 2000.
[38] T. Unfer, An asynchronous framework for the simulation of the plasma/flow interaction, J. Comput. Phys. 236 (2013) 229–246.
[39] M. ur Rehman, C. Vuik, G. Segal, SIMPLE-type preconditioners for the Oseen problem, Int. J. Numer. Methods Fluids 61 (2008) 432–452.
[40] P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order elliptic problems, Computing 56

(1996) 179–196.
[41] P.S. Vassilevski, U.M. Yang, Reducing communication in algebraic multigrid using additive variants, Numer. Linear Algebra Appl. 21 (2014) 275–296.

http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6D756E6F3038s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6E6176753036s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib61676770726F766564s1
http://homepages.ulb.ac.be/~ynotay
http://homepages.ulb.ac.be/~ynotay/AGMG
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib62666367s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib61676D67s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib61676763646966s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6E6F76613038s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6368656D70726F746F747970653131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib6368656D70726F746F747970653131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib70656E73693131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib70656E73693131s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib727573743837s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib727573743837s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib73613833s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib736D69626A6F67726F3936s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib636F6E64756374696F6E3133s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib74726F7363683031s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib7475746F3030s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib7475746F3030s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib706C61736D613133s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib7265767573653038s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib76616D6162723936s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib76616D6162723936s1
http://refhub.elsevier.com/S0021-9991(14)00725-6/bib766179613134s1

	A massively parallel solver for discrete Poisson-like problems
	1 Introduction
	2 Algorithm overview
	3 Problems speciﬁcation, reported data and tested architectures
	4 Results with a direct solver at bottom level
	5 Algorithm redesign
	6 Results on petascale computers
	7 Conclusions
	Acknowledgement
	References

